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Abstract--This paper describes a study of laminar convective heat transfer to a fluid induced to flow by 
buoyancy forces through a heated vertical duct with a flow restriction at its lower end. The duct has a circular 
cross-section and the heating provides a uniform surface temperature. The entry restriction is formed by an 
unheated downward extension of the duct. The equations that govern the laminar natural-convective flow 
through the duct were solved by a step-by-step numerical technique. The relationship between the overall 
Nusselt number and the Rayleigh number is presented graphically in terms of the dimensionless flow rate and 
also in terms of the ratio of the unheated length of the duct to the heated length. This length ratio provides a 
measure of the severity of the entry restriction. An important finding of the study was that if the entry 
restriction exceeds a certain size, laminar upward flow throughout the whole of the heated part of the duct is 
not physically possible. This occurs if the ratio of the unheated length to the heated exceeds 18 for values of 
Rayleigh number up to 20 and exceeds only 2 for Rayleigh numbers in excess of 103. Some experimental work 
was undertaken to corroborate the theoretical relationship and also to examine the nature of the flow in ducts 

for which the value of the unheated to heated length ratio for laminar flow throughout is exceeded. 

N O M E N C L A T U R E  

a, internal surface area of heated part of 
duct ; 

c, constant  ; 
cv, specific heat at constant pressure; 
g, acceleration of gravity; 
Gr, Grashof number,  9fl(Tw - To)r4 /v21; 
hx, heat dissipation rate from inlet to 

elevation x ; 
Hx, dimensionless heat dissipation rate from 

inlet to elevation x, hJpcpvlGr(Tx-  To); 
k, thermal conductivity; 
l, length of heated part of duct;  
L, dimensionless length of heated part of 

duct, 1/Gr ; 
li, length of unheated part of duct (entry 

restriction); 
L~, dimensionless length of unheated part of 

duct (entry restriction), l jIGr; 
Nu, Nusselt number, htr~,/a(T,~ - To)k, 

h , /2~l(T~-  To)k; 
p, pressure; 
P, dimensionless pressure, pr4~/pl2v2Gr 2 ; 
Pa, pressure defect (P -Po) ;  
Pal, dimensionless pressure defect, 

4 2 2 . par~/pl v Gr, 
Pr, Prandtl  number, gcv/k, 
q, volume flow rate ; 
Q, dimensionless volume flow rate, q/IvGr; 
r, radial co-ordinate; 
R, dimensionless radial co-ordinate, r/r w; 
Ra, Rayleigh number, GrPr ; 
Rer, Reynolds number  (based on radius of duct), 

u,.rw/v, GrQ1/Trrw; 

T, temperature; 
u, velocity in x-direction ; 
U, dimensionless velocity in x-direction, 

ur2~/IvGr ; 
v, velocity in r-direction ; 
V, dimensionless velocity in R-direction, 

Vrw/V ; 
x, vertical co-ordinate, x = 0 at bottom 

of heated part of duct;  
X, dimensionless vertical co-ordinate, X = 0 

at bottom of heated part of duct, x/IGr. 

Greek symbols 

fl, coefficient of thermal buoyancy;  
0, dimensionless temperature, 

( T -  To)/(T w -  To); 
/~, dynamic viscosity; 
v, kinematic viscosity; 
p, density. 

Subscripts 

c, centre line of duct;  
cx, centre line of duct, elevation x ; 
d, defect (pressure); 
i, unheated part of duct ; 
m, mean value; 
0, ambient condition ; 
opt, opt imum value; 
r, radius of duct ; 
t, top of duct ; 
w, wall. 

I N I " R O D U C T I O N  

WITH the growing need to conserve hydrocarbon 
energy resources, it is readily apparent that natural- 
convective systems are likely to find wider use in the 
future, particularly in domestic applications. For  * Senior Lecturer, Department of Mechanical Engineering. 
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example, natural convection alone could provide the 
flow mechanism in some smaller types of solar heating 
and ventilating systems. 

Since the work of Elenbaas [1, 2] was published in 
1942, several papers on various aspects of natural- 
convective flow through open ended vertical ducts and 
channels have appeared in the literature [3-11]. One 
problem that has special relevance to natural- 
convective systems and yet has received little attention 
is the behaviour of natural-convective flow through a 
duct having a restricted-entry [5, 7, 11]. Clearly such a 
restriction will alter the behaviour of the flow within 
the duct and reduce the rate of heat transfer. For 
example, if the entry restriction is infinitely large, the 
duct will behave like an open thermosyphon [12]. (An 
open thermosyphon is a vertical duct that is closed at 
the bottom and open at the top.l 
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FIG. 1. Diagrammatic sketch of vertical circular duct with a 
restricted entry. The restriction is an unheated downward 

extension of the duct of length/~. 

The present paper describes an analytical and 
experimental investigation into the behaviour of the 
restricted-entry duct. The ducts considered were verti- 
cal and circular in cross-section. An entry restriction 
was provided, as shown in Fig. 1, by leaving the lower 
part of the duct unheated. This type of entry restriction 
was chosen because it produced, except if it were larger 
than a certain value, laminar flow in both the unheated 
and heated parts of the duct and thereby simplified the 
mathematical analysis. The heated wall of the duct was 
assumed to be at a uniform temperature and the 
unheated wall to be at ambient temperature. 

A restricted-entry duct, as described above, can be 
classified for the purpose of heat transfer by two 
dimensionless parameters. First a modified Rayleigh 
number Ra, which is a conventional Rayleigh number 
(based on the radius of the duct r~) multiplied by the 
geometric parameter r,~/l (where l is the length of the 
heated part of the duct) and secondly, the ratio of the 
lengths of the unheated and heated parts, ljl. 

DYER 

THEORETICAL CONSIDERATIONS 

Heating the surface of the restricted entry vertical 
duct as shown in Fig. 1 will produce a natural- 
convective flow through the duct. In the following 
analysis it will be assumed that the flow is completely 
laminar and in an upward direction. This implies, as 
will be discussed later, that some limit is placed on the 
maximum value of the ratio of the unheated length to 
the heated, I/I for a given Rayleigh number. The 
additional simplifying assumptions that were made 
are: (a) the fluid is Newtonian; (b) fluid properties, 
except density, are independent of temperature; (cl 
density variations are significant only in producing the 
buoyancy force ; (d) flow in the duct is steady, incom- 
pressible and axisymmetric. 

The equations of continuity, momentum and energy 
in cylindrical co-ordinates for laminar flow are: 

Continuity: 

/'u 1 ~ ( r v )  
+ r - ? ; :  = o. t 

Momentum : 

P u v - +  t' U |  . . . . . .  + ( ('" " l  ~r ~ f¥ / r ~'S'-- ] + g,-Tx2~" 

(2) 

(3) 

Ou du] O(p-Po) 
P u ~ ' + V ~ r  = ex 

[1 ~? / Ou'~ Eu]  
+I t - - - -  r - -  + g(Po [r Or 0r)+  -pt. (6} 

Expressing the buoyancy term in equation {6) in terms 
of the temperature difference (T-- T0), and treating the 
pressure difference (p-Po), in the same equation as a 
pressure defect Pd, yields 

Ou ?m ] 8p~ 
P U~,x+V - ax & 1 ,?x 

[1 o / 
• !7) 

It is convenient to express equations (1), (3L (4) and 
(7) in dimensionless form. Radial dimensions are made 
dimensionless by referring them to the radius of the 
duct rw and axial dimensions by referring them to the 

Energy : 

~T ?,T k [~2T I ~ T  ~2T] 

Since the hydrostatic pressure of a fluid decreases 
with elevation according to the equation 

dPo 
- -  = - P o . q  ( 5 )  
dx 

[(epo/gX) + Po9] can be added to the RHS of the first 
momentum equation (equation 21. This yields 
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product of the length of the duct 1 and the Grashof 
number Gr, that is, 

R = r/rw and X = x/IGr. (8) 

It should be noted that generalising axial dimensions 
in this manner leads to the dimensionless length of the 
duct being given by 

1 
L = - - .  (9) 

Gr 

This particular generalisation of the length of the duct 
[4] provides the basis, as will be seen later, for the 
method of solving the equations governing the flow. 
Using these dimensionless co-ordinates and the di- 
mensionless variables listed in the Nomenclature, the 
dimensionless equations of continuity, momentum 
and energy, after eliminating small order terms, reduce 
to 
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Nomenclature) and a is replaced by 2nr~l equation 
(15 ) becomes 

Nu = GrPrH~ (16) 
2n 

o r  

Nu - Rail,  (17) 
2n 

OU V OV 
~ + ~ - + ~ -  = 0 (10) 

OU OU OP d 02U 1 OU 
U ~ + V ~ -  OX kO--R-T-I-R~-~-+0 (11) 

OP d 
- 0 (12) 

OR 

O0 O0 1 [- 020 1 00 ] 
(13) 

Terms containing the factor rw/lGr have been omitted 
from the foregoing dimensionless equations. This was 
permissible because in most practical situations this 
factor, which is raised to the second power, would be 
very much less than unity. 

If the heating of the duct is such that the changes in 
the density of the fluid can be considered to be 
negligible (except in giving rise to the buoyancy 
forces), the dimensionless flow rate Q, which is given by 

Q = 2n f ~  UxR dR (14) 

will be constant throughout the length of the duct. This 
equation (equation 14) together with equations 
(10)-(13) govern the natural-convective flow of the 
fluid through the duct. 

General Nusselt number relationship 
A Nusselt-number relationship in terms of dimen- 

sionless parameters can be established in the following 
manner. The Nusselt number pertaining to the duct is 
defined as 

Nu h~rw 
(15) 

a(Tw- To)k 

where h t is the rate at which the internal surface 
dissipates heat, rw is the radius of the duct, a is the 
surface area of the heated length and (T,~- To) is the 
temperature excess of the surface. If h r is expressed in 
terms of the dimensionless rate H, (as defined in the 

Since the relationship between Nu and Ra alone is 
required, the governing equations (10)-(14) were 
solved to determine how H t in equation (17) varies 
with Ra. These equations were solved for the following 
boundary conditions (Table 1). 

Table 1. Boundary conditions 

Location U V 0 Pd 

X =  -L~andR = 1 0 0 0 0 
X =  -L iand  1 <R~<0 Q/n 0 0 0 
- L ~ < X < O a n d R = l  0 0 0 <0 
- L i < X < O a n d R = O  var. 0 0 <0 
O<~X<LandR=l 0 0 1 <0 
0 ~< X < L and R = 0 var. 0 var. < 0 
X = L a n d R = l  0 0 1 0 
X = L and R = 0 var. 0 var. 0 

In Table 1 it will be seen that the pressure defect Pa, 
at the bottom of the duct has been assumed to be zero. 
This assumption is not strictly correct because it 
ignores for one thing the pressure drop that induces 
fluid at rest to flow to the inlet of the duct (namely, Pd 
= - U2/2 if a fiat entry velocity profile is assumed). 
Aihara [9-] demonstrated in the case of a duct formed 
by two parallel plates that ignoring the pressure drop 
at inlet, as hitherto [3-5-], produced only a minimal 
effect on the computed relationship between the 
overall Nusselt number and the Rayleigh number. 
Likewise Dyer [10] later showed that in the case of a 
vertical circular duct dissipating a uniform heat flux 
the inclusion of the pressure drop at inlet in the 
computations had no effect on the overall Nusselt 
numbers at small Rayleigh numbers and reduced 
overall Nusselt numbers by less than 10% at large 
Rayleigh numbers. In view of these findings, together 
with the uncertainty about the actual flow pattern at 
inlet and the relatively large pressure drop that will 
occur in the unheated part of the duct, the pressure at 
inlet was taken to be zero. 

At this point it is useful to consider some approxi- 
mate Nusselt-number relationships, which can readily 
be derived, before beginning the general solution 
of the governing equations. 

Approximate Nusselt number relationship for small 
Rayleigh numbers (fully-developed flow) 

Small Rayleigh numbers can be obtained by making 
the length to radius ratio I/rw, sufficiently large. With 
such a value of l/r w the flow in the heated part of the 
duct will be fully developed, that is, the temperature of 
the fluid will be the same as that of the heated surface 
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and the velocity profile will be parabolic. Fully- 
developed flow can also be obtained in the unheated 
part of the duct by making l jr , .  sufficiently large. 

In this situation where both I and I i >> r~ and T - ,  7],, 
at x << l, the balance between the hydrostatic and 
viscous pressure differences is given by 

32 (li+/) u 2 
p g f l ( T , , - T o ) l - R e  ~ 2rw p ~ .  118) 

Furthermore, the heat transferred to the fluid is 

h, = pqcp(T w - To). (19) 

Equations (18) and (19) yield 

8 
H t = - Q2(I + l/I). (20) 

7~ 

It will be seen from equation (14) that for fully- 
developed flow H, is equal to Q since 0 ~ 1. Therefore 
from equation (20) 

7~ 
H, = - - .  (21 ) 

8H + Ijl) 

Substituting equation (21 ) into equation (17) yields the 
following relationship for fully-developed flow: 

Ra 
Nu - (22) 

16(1 +li/l) 

For a duct without an entry restriction (that is, l /I  
= 0) equation (22) reduces to 

Ra 
Nu - (23) 

16" 

On the other hand, if ljl--* w ,  Nu ~ 0 according to 
equation (22). This obviously would not be the case 
because heat would be dissipated by an open-thermo- 
syphon flow that would occur in the upper part of the 
heated duct. It follows, therefore, that there will be a 
maximum value of l j l  for upward flow throughout the 
duct. 

Approximate Nusselt-number relationship for large 
Rayleigh numbers (boundary-layer flow) 

Boundary-layer flow occurs in a duct that has a 
small value of l/r~ and consequently a large value of 
Ra. In this case temperature and velocity profiles near 
the surface of a relatively large diameter duct will be 
somewhat similar to those in the natural-convective 
boundary layer of a heated vertical flat surface. 
Consequently if the rates of heat transfer from both the 
duct and the flat surface are assumed to be similar, it 
follows that the Nusselt number of the duct has to be 
independent of the diameter. This condition is met by 
an equation of the form 

Nu = cRa 1/4 (24) 

from which the radius rw, cancels out leaving I as the 
sole characteristic dimension. The value of c in equa- 
tion (24) will be dependent upon ljl.  For a plain-entry 
duct c would be approximately 0.6 [-6, 7] and for 
restricted-entry ducts c should have smaller values. 
Furthermore, as in the case of the restricted-entry duct 

with fully-developed flow, laminar upward flm~ 
throughout the duct will not be possible for all values 
of li/l. 

Solution c?f the flow equations 
In order to obtain the relationship Nu = f (Ra ,  I/i) 

for all laminar upward flow values of Ra and to study 
the development of the flow up the duct equations 
(10) (14) were solved for the boundary conditions 
given previously by relaxation on a digital computer. 
As the present interest concerns uni-directional 
stream-wise flow, it was expedient to solve the equa- 
tions by a step-by-step relaxation technique, the details 
of which have been described elsewhere [3, 4, 10, 11] 

Each solution was computed for given values of the 
dimensionless flow rate Q, the dimensionless unheated 
length Li, and the Prandtl number. A relaxation grid 
with 21 horizontal mesh points was superimposed on a 
radial plane through the duct. Each row up the duct 
was relaxed in turn for stream-wise and radial velo- 
cities, temperatures and the pressure defect. Fhe 
solution was begun at the bottom of the duct where the 
entry velocity was assumed to be uniform. The un- 
known dimensionless heated length of the duct L. was 
established by continuing the relaxation up the duct 
until the pressure defect ceased to be negative. The 
reciprocal of the thus obtained dimensionless length L, 
by definition, gave the Grashof number. The dimen- 
sionless total heat-transfer rate H,, was obtained from 
the following equation 

t f  t = 2re Uf l tRdR (25) 

and then the Nusselt number was found from equation 
(16). 

Since air is the fluid in many natural-convective 
processes, the computations were carried out for a 
Prandtl number of 0.7. It is worth noting that com- 
putations for similar problems [10, 11] showed that 
the Prandtl number had only a very small effect on the 
relationship between Nusselt and Rayleigh numbers 
for Pr~> 0.7. For smaller Prandtl numbers, however, 
quite the opposite was found to be the case. 

Theoretical results 
In Fig. 2 the computed Nusselt number of a duct for 

laminar flow throughout is presented as a function of 
the Rayleigh number and the dimensionless volume 
flow rate Q. The top curve describes the relationship 
for plain-entry ducts (li/1 = 0) and the curves for the 
various constant values of Q that branch off it are for 
restricted-entry ducts. In the fully-developed flow 
regime (associated with small values ofRa) Nu will be 
seen to be proportional to Ra. The explanation for this 
can be obtained by referring to equation (14) and (17). 
Since, as stated previously, Q and H, for fully- 
developed flow will have the same value (which, 
according to equation (21), is dependent only upon the 
ratio ljl), it follows from equation (17) that if Q is 
constant Nu will be proportional to Ra. 

The N u - R a  relationship in a more practical form, 
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FIG. 3. Nusselt number vs Rayleigh number for laminar flow in restricted-entry ducts in terms of the 
unheated to heated length, li/l. 

with l~/l instead of Q as the third parameter, is shown in 
Fig. 3. This relationship will be seen to agree with 
equations (23) and (24), which were derived for fully- 
developed flow (small Ra) and boundary-layer flow 
(large Ra) respectively. 

Returning to Fig. 2, a most interesting feature of the 
Nusselt-number relationship is that the computed Q 
curves for Q <0.021 actually terminate in the 
boundary-layer regime. This behaviour of the Q curves 
accounts for the fact in Fig. 3 that laminar upward flow 
throughout the duct is only possible if llft <~ 18 for 
small Rayleigh numbers and if l i f  t ~< 2 for large 
Rayleigh numbers. 

It can be deduced from Fig. 3 that the largest entry 
restriction that just allows upward flow reduces the 
value of Nu by a factor of 19 in the fully-developed flow 
regime and by a factor of only 1.3 in the boundary- 
layer flow regime. The Nusselt-number relationships 
for the two extreme conditions of fully-developed flow 
are: 

Ra 
Nu = -i6 for l~/l = 0 (26) 

and 

Ra 
Nu =~--~ for lift = 18. (27) 

These equations are in agreement with equation (23). 
The corresponding equations for the boundary-layer 
flow regime, which have the same form as equation 
(24), are 

Nu = 0.63Ra °'zs for l l f  t = 0 (28) 

and 

Nu = 0.48Ra °'2s for lJl = 2. (29) 

In Fig. 2 it will be recalled that the constant Q curves 
for Q/> 0.021 continue into the fully-developed flow 
regime. On the other hand, the curves that have values 
of Q less than 0.021 terminate in the boundary-layer 
regime. It was conjectured that the flow situation had 
changed when these points of termination were 
reached. To explain the phenomenon further, the tem- 
perature and velocity profiles in Figs. 4 and 5 for the 
continuous curve Q = 0.021 will be examined. It will 
be seen in Fig. 4 that the velocity distribution for Ra 
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FIG. 4. Dimensionless temperature, 0 and velocity, U profiles 
for laminar flow in a restricted-entry duct in which the 
velocity on the centre line falls to zero at the top of the duct. 

Ra = 1180, Pr = 0.7, Q = 0.021 and ll/l = 3.37. 

= 1180 changes from a fully-developed parabolic 
profile at the beginning of the heated part of the duct to 
a boundary-layer profile. Furthermore,  at the top of 
the duct the velocity on the centre line has fallen to 
zero. Now the effect on the velocity and temperature 
profiles of  reducing R a  to 64 and still maintaining the 
same value of Q (that is, Q = 0.021) is shown in Fig. 5. 
Again the velocity profile is parabolic at the beginning 
of the heated length but in this case the boundary-layer 
profile with zero velocity on the centre line occurs near 
the bot tom of the heated length at x/I  = 0.05. Further 
up the duct velocities in the centre region begin to 
increase and fluid reaches the top of the duct with a 
fully-developed flow profile. If, on the other hand, R a  is 
raised above 1180 while Q is still maintained equal to 
0,02 I, boundary-layer flow is produced similar to that 
shown in Fig. 4 except that the velocity on the centre 
line does not  drop to zero at the top of the duct. 

Consideration will now be given to a Q curve of a 
slightly smaller value, namely Q = 0.020, which ac- 
cording to Fig. 2 terminates at R a  = 2 x 103. At this 
value of R a  the velocity profiles are similar to those 
already shown in Fig. 4 with the velocity on the centre 
line dropping to zero at the top of the duct. With the 
same value of Q of 0.020 and a larger entry restriction 
to give a smaller Ra,  boundary-layer flow with zero 
velocity on the centre line was found to occur below 
the top of the duct. However,  instead of the velocities in 
the centre region increasing above this point as they 
did for the curve Q = 0.021, as shown in Fig. 5, the 
solution ran out of control because the step-by-step 
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FIG. 5. Dimensionless temperature O, and velocity, U profiles 
for laminar flow in a restricted-entry duct in which the 
velocity on the centre line falls to zero and then increases 
again. The flow in the upper part of the duct is fully developed. 

Ra = 64, Pr = 0.7, Q = 0.021 and I / I =  16.1 

relaxation will not  handle other than uni-directional 
laminar-flow problems. It would appear, therefore, 
that the nature of the flow had changed owing to the 
cooler central region of the duct being no longer able 
to supply fluid to the growing boundary layer near the 
wall. This is in contrast to the previously discussed case 
of Q = 0.021 ; here it was seen that the velocity on the 
centre line also fell to zero but thereafter it immediately 
began to increase because the temperature profile was 
more developed and consequently the boundary layer 
had ceased to grow. 

Figure 6 shows the pressure defect along a 
restricted-entry duct for a small Rayteigh number. It 
will be observed that the pressure defect varies almost 
linearly in each part of the duct. This implies, of course, 
that the flow is fully developed. 

It can be shown that a duct has a particular diameter 
for which the natural-convective rate of heat transfer 
per unit cross-sectional area is a maximum. To 
determine this opt imum diameter it will be assumed 
that the heated length l, the unheated length ratio 1J1, 
and the temperature excess of the surface of the heated 
part are all fixed. The opt imum diameter of the duct is 
established by finding the value of Ra that maximises 
the total heat transfer per unit cross-sectional area 
(ht/gr2~). Expressing h t in the foregoing expression in 
dimensionless form produces 

h~ HtGrpcpv l ( ' f  w - ~ )  
~T = ~ t30) 
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1347 

Using equation (16), equation (30) can be written as 

h---k-t = 2 n u  pcpvl(Tw- To) . (31) 
~r~ Pr r~ 

Multiplying the numerator and denominator on the 
RHS of equation (31) by Ra 1/2 yields 

h, ~ Nu [-flgl(Tw- To)a'] 1/2 
-5 =  R- pc, L j (32) 

I~r  w 

An inspection of equation (32) will show that for given 
values of l and (Tw-To)  and for constant fluid 
properties the terms to the right of Nu/Ra 1/2 are 
invariant. Hence it follows that 

h t Nu 
7zr2 ~ Rail 2 . (33) 

This means that the heat transfer per unit cross- 
sectional area is proportional to Nu/Ra 1/2 for given 
values of I and (T w-  To) and constant fluid properties. 
In Fig. 7, which shows a plot o fNu/Ra  1/2 against Ra, it 
will be observed that Nu/Ra 1/2 has a maximum value 
for a given lift. Thus the optimum diameter of the duct 
can be obtained from the Rayleigh number that 
maximises Nu/Ra 1/2 for the particular value of ll/l. It 
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0.05 

, , r ~j  f I ' ' 1  I f r ,  I , , 

l l / t = O ~ ~  

I0 10 2 Io 3 
Ra 

10 4 

FIG. 7. Parameter Nu/Ra 1/2, which is proportional to the 
rate of heat transfer per unit flow area, vs Rayleigh number for 

restricted-entry ducts. 

should be noted that for Prandtl numbers less than 0.7 
the relationship between Nu/Ra lj2 and Ra, like that 
between Nu and Ra, becomes a strong function of the 
Prandtl number [11]. Consequently, data in Fig. 7 for 
determining the optimum diameter of a restricted- 
entry duct are valid only for Pr >~ 0.7. 

EXPERIMENTAL STUDY 

Equipment and procedure 
Experiments were conducted, with air as the work- 

ing fluid, to corroborate some of the theoretical 
findings and also to obtain information on ducts with 
larger entry restrictions than, as shown theoretically, 
would allow upward laminar flow to exist throughout 
the whole of the heated length. Three experimental 
ducts, the diameters of which were 25.4, 57.2 and 
95.3 mm, were used ; the heated length of each duct was 
1220 mm. 

Each duct was heated by three independent electri- 
cal resistance elements. The lengths of the elements 
and their winding pitches were designed to give a good 
approximation to a uniform surface temperature. The 
ducts were made of aluminium tubing with a wall 
thickness of 3.25 mm. The external surface of the 
25.4mm diameter duct was anodised and the bare 
nichrome wire heating elements were wound on to it 
(anodised aluminium is nonconducting at low volt- 
ages). However, in the case of the two larger diameter 
duets grooves for locating the elements were turned on 
the outer surface before the tubes were anodised ; as a 
precaution against short circuits at the edges of the 
grooves a layer of fibre glass tape was wrapped around 
the surface before the nichrome wire was wound on to 
the tube. 

Fibre-glass insulation was wrapped around each 
duct to provide a heat-insulation wall, which was 
about 175mm thick. Despite this large thickness of 
insulation the external heat loss was still significant 
and it had to be taken into account in a manner that 
will be described later. 

The AC mains provided the power source for the 
heating elements. A voltage stabiliser was used to 



1348 J.R. 

maintain a constant voltage across each element. The 
power supplied to each of the three heating elements 
was controlled by a variac. 

Ideally the type of entry restriction should have been 
exactly the same as the one that was used in the 
theoretical model, that is, an unheated extension of the 
duct. However, as entry lengths of up to 150 times as 
long as the 1220ram long heated tube were required, 
an obvious major accommodation problem was en- 
countered. A compromise solution was adopted where- 
by the greater part of the pressure drop associated 
with l~/l ratios in excess of unity occurred over a 
relatively short distance in a smaller diameter tube 
below a 975 mm long unheated tube of the appropriate 
diameter, which was attached to the bottom of the 
heated tube by a nylon coupling. This 975 mm long 
tube, in addition to providing an l j l  ratio of 0.8 helped 
to smooth the flow before it entered the heated tube. 
Surface temperatures were monitored by nine ther- 
mocouples imbedded in the wall. A travelling thermo- 
couple measured temperatures along the centre line of 
the duct. Owing to the slight resistance to the flow it 
imposed, this thermocouple was inserted after the heat 
transfer measurements had been taken. Interruption to 
the flow below the junction of the thermocouple was 
minimal. 

The rate at which the internal surface of the duct 
dissipated heat was obtained by subtracting the heat 
loss through the insulation from the total power input 
to the heating elements. The relationship between the 
external heat loss and the internal surface temperature 
was established by operating the duct at various 
temperatures with the ends blocked and the bore filled 
with pieces of fibre-glass insulation to minimise in- 
ternal air movements. 

In most experiments the temperature difference 
between the internal surface of the duct and the 
ambient air was kept between 5 and 65°C. If the 
temperature differences were less than 5°C, small 
errors in the measurement of the temperatures of the 
ambient air and the internal surface could produce 
relatively large errors in the temperature difference and 
consequently in the values of Nu and Ra. On the other 
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hand, large temperature diflerence~ ',~ere also ~m~mt- 
able for two reasons. First, large lemperature d i f f e r  
ences violate the condition that densit~ \ali;-t|lOFiS 

should be small and secondly, the. rate ol increase h: (h 
diminishes significantly with mcrcasin,:, tempcraCurc 
difference because the kinematic viscv,sity of air, whici~ 
appears in the denominator of(h' |~ ihe second !,{~wer. 
increases with temperature. 

To carry out a test, it was important that the heated 
surface of lhe duct was at a uniform temperature 
and in equilibrium with i|s >urr,,undings. Obtaining 
this condition could take :is long as 6h. This fdcl 
coupled with the requirement ,,i' a stable ambient 
temperature meant that only one set of results could be 
obtained in a day. 

For evaluating the Nusselt and Rayleigh numbers. 
the air properties, except the coefficient of thermal 
buoyancy, were determined at the temperature of the 
surface of the duct. The coefficient of thermal buoy- 
ancy was taken to be the reciprocal of the absolute 
temperature of the air entering the dud. 

Experimental results 
Unrestricted-entry ducts. The experimental results 

for ducts with plain entries are presented in Fig. 8. It 
will be seen that these results compare satisfactorily 
with the theoretical relationship reproduced from Fig. 
3. Furthermore, they are in agreement with the 
experimental studies of Elenbaas [ 2 ]  

Visualisation studies with smoke revealed that for 
Ra in excess of 103 the out-flowing plume became less 
laminar in appearance. Hence, inspection of Fig. 8 will 
show that for some of the tests on the 57.2mm 
diameter duct and for all the tests on the 95.3 mm 
diameter duct the flow was transitional. These findings 
are in accordance with the critical values of Ra that can 
be found as follows. The Reynolds number of  the duct, 
based on the radius, can be expressed as 

RaQI 
Re, = ......... 1.34} 

,~Prr. 

Equation (34) gives the following critical values of Ra 
if 1150 is taken to be the critical value of Re~ []S]: 

I0 
. . . .  , . . . .  r . . . .  f . . . .  I ' ' " J 2 . . S . - f " !  
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FIG. 8. Experimental Nusselt number vs Rayleigh number for ducts with no entry, restriction (1~1 - O) 
compared with the theoretical relationship. 
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FIG. 9. Experimental Nusselt number vs Rayleigh number for restricted-entry ducts compared with the 
theoretical relationship for laminar upward flow throughout. Below Ra = 100 the duct was 25.4mm in 
diameter, between Ra = 2 x 102 and 2 x 1 0  3 the duct was 57.2mm in diameter and above Ra = 2 x 1 0  3 

th~guct was 95.3mm in diameter. The heated length of each duct was 1220mm. The experimental data 
o~+the open thermosyphon are in the impeding flow regime; the theoretical relationship shown is for 

Pr = 1 and I/rw = 50 [12]. 

3 × 102, 2 x 103 and 4 × 103 for the 25.4, 57.2 and 
95.3mm dia ducts respectively. (Owing to the less 
favourable shape of the velocity profile for boundary- 
layer flow, even smaller critical values of Ra could be 
expected.) 

Although all the tests on the plain entry 25.4 mm dia 
duct yielded values of Ra below the critical value, it 
was surprising to find that temperatures measured 
along the centre line of the duct fluctuated significantly 
and in a random manner with the maximum intensity 
of fluctuation occurring about a third of the way up the 
duct. Temperature variations even greater than 10~o of 
the temperature excess of the internal surface were 
recorded. In an attempt to explain this phenomerion, 
smoke carefully released near the entrance revealed 
that the air stream at entry was neither axisymmetric 
nor completely steady as hitherto assumed. It was 
decided, therefore, to provide the entry region with 
additional protection against stray air movements in 
the room. (As it was, the experiments were conducted 
in a closed room and within a draught shield.) The 
addition of a cylindrical shield, 180mm in diameter 
and 200 mm deep, mounted on the underside of the 
duct was found to significantly reduce the temperature 
fluctuations and it was therefore concluded that the 
large temperature fluctuations were brought about by 
flow irregularities in the air as it entered the duct. This 
conclusion was reinforced by the fact that even with a 
small entry restriction (l~/l = 0.8) the smoothing of the 
air stream before it entered the heated length was such 
that the temperature fluctuations on the centre line 
were almost insignificant. Further evidence supporting 
this view was provided by solving the governing 
equations for arbitrary inlet velocity profiles. It was 
found that although the overall Nusselt number for a 
given Rayleigh number was relatively insensitive to the 
shape of the velocity profile at inlet, temperatures on 
the centre line differed by up to 8~o. 

Restricted-entry ducts. The heat-dissipation charac- 
teristics of restricted-entry ducts is shown in Fig. 9. The 
experiments with li/l = 0.8, which involved the three 
different diameter ducts, yielded results that agreed 
satisfactorily with the theory. 

Rayleigh numbers in excess of 100 were chosen for 
investigating the behaviour of ducts with large values 
of ll/l. This region was considered interesting because 
within it the theoretical Nusselt relationship for up- 
ward laminar flow tapers to a narrow band between 
lift = 0 and 2. Since, as previously mentioned, very 
long ducts could not be accommodated in the labo- 
ratory, a compromise was made whereby the greater 
part of the pressure drop over the entry restriction 
occurred in a smaller diameter tube below a 975 mm 
long tube of the appropriate diameter. This compro- 
mise, although it provided only approximate values of 
1~/1, was justifiable on the ground that valuable infor- 
mation could be obtained, on which future work could 
be based. The estimation of the equivalent values o f l j l  
was based on the fact that for a given laminar-flow 
rate the pressure drop across a tube (including the 
entrance effect) varies inversely with the fourth power 
of the diameter [15]. Although the tube of appropriate 
diameter between the smaller diameter tube and the 
heated duct was only 17 dia long for the 57.2 mm dia 
duct and 10 dia long for the 95.3 mm dia duct (a length 
of 20-40dia would have been more desirable [15]), 
this was not considered to present a serious problem. 
As discussed previously, the theoretical overall Nusselt 
relationship was found to be relatively insensitive to 
the shape of the velocity profile at inlet and secondly, 
even with plain entry ducts unavoidable small flow 
irregularities at inlet were present. 

Experimental results for the duct with l j l  ~ 8 
yielded Nusselt numbers just below the theoretical 
Nusselt curves for upward laminar flow. The tempera- 
ture of the out-flowing air was significantly higher than 
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Table 2. Temperature excess of the air 
leaving the duct on the centre line 

TemT 0 
l i / l  R a  

& , -  70 

0.8 1810 /).34 
8 1910 /).82 

that for the duct with li/l  = 0.8 at a similar Rayleigh 
number. This can be seen in Table 2. 

The higher temperature excess of the air leaving the 
duct with I j l  ~ 8 implies that the flow would have 
acquired a certain degree of development. In other 
words, a value of ( T ~ - T o ) / ( T  ~ - To) equal to 0.82 
would not be consistent with a boundary-layer flow. If, 
as the theory predicted, a boundary-layer flow had 
developed in the lower part of the heated duct with the 
velocity on the centre line falling to zero, it is apparent 
that the flow rate in the central region would have 
increased again by some mechanism as the tempera- 
ture of the air became more uniform across the duct. 
The nature of this mechanism will be discussed after 
the results for the duct with l j l  ~ 48 have been 
presented. 

The results for the ducts with l j l  ~ 48, are also 
plotted in Fig. 9. The slight discontinuity in the trend of 
the points that is noticeable at R a  = 2 × 103 marks the 
change from the 57.2 mm dia duct to the 95.3 mm dia. 
This discontinuity is attributed to errors associated 
with large temperature differences in the case of the 
smaller diameter duct and small temperature differ- 
ences in the case of the larger diameter duct (see section 
on Equipment and procedure). The tests on the duct 
with l~/l ~ 48 revealed the following interesting pheno- 
mena. 

l. The relative gap between the Nusselt number and 
that for the plain-entry duct decreased as the Rayleigh 
number increased. For example, at R a  = 2 x 103 the 
Nusselt number for l j l  ~ 48 is a factor of 4 below that 
for l i f  t = 0, whereas at R a  = 2 x 104 the Nusselt 
number for l j l  = 48 is a factor of only 2 lower. (A 
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similar trend was also apparent in the Nusselt numbers 
obtained from the duct with l J l  ~ 8.) This pattern of 
increase in the Nusselt number for ducts with large 
entry restrictions is in contrast to the theoretical 
relationship for upward flow throughout the duct tot 
Rayleigh numbers above 10 3 ; here the reduction factor 
for a given 1~/1 is almost independent of the Rayleigh 
number. 

2. Superimposed on the outflowing air from the 
duct with l j l  ~ 48 was an irregular flow into the duct. 
This flow was revealed by the careful release of smoke 
above the top of the duct. Further evidence of this was 
provided by the fluctuations in temperature just within 
the duct and by the lower mean temperatures com- 
pared with those further down the duct. These points 
:ire illustrated in Fig. 10. The irregular inward flow 
indicated, of course, that an open-thermosyphon effect 
had established itself in opposition to the weak flow up 
the duct. 

3. Figure l0 also shows that the temperature along 
the centre line increased rapidly in the lower part of the 
duct. Temperatures, in fact, were very close to that of 
the wall between x / l  = 0.37 and 0.87. This implies, as in 
the case of the duct with l j l  ~ 8, that the boundary- 
layer flow in the lower part of the duct had been 
superseded by a more developed laminar flow. 

4. The large fluctuations in the temperature along 
the centre line up to x / l  = 0.37 should be noted in Fig. 
10. These fluctuations, which are indicative of large 
scale, irregular air movements, could be associated in 
some way with the situation described in the Theor- 
etical results where the central stream of cool fluid. 
owing to its low flow rate, could not meet the demands 
of the growing boundary layer near the wall. This 
point will be returned to later. 

In order to study visually the flow produced by large 
entry restrictions a duct was made from clear perspex. 
This duct, which was intended to provide only quali- 
tative data. had an internal diameter of 53 mm, a heated 
length of 857 mm and an unheated length of 1310 mm 
A fine wire screen at the bottom provided the major 
resistance to flow. 

T~ x /k=  0 . 8 7  
0 .37  
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FIG. 10. Temperature fluctuations on the centre line of the 57.2mm diameter restricted-entry duct. 
(Temperatures at each elevation were not recorded simultaneously.) The temperature at the top of the 

duct was depressed by the unsteady open-thermosyphon flow. Ra = 1040, P r  = 0.7, till ~ 48. 
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Smoke, generated by a draught-detecting device 
(manufactured by Auergesellshaft GMBH of Berlin), 
was released near the entrance to the duct. A distinc- 
tive laminar smoke plume developed in the unheated 
length but immediately it entered the heated length the 
smoke moved towards the wall. This was consistent 
with the growth of a strong boundary-layer flow as 
predicted in the theoretical work. After about 30 s the 
main volume of smoke passed out of the duct leaving a 
core of smoke (see Fig. 11) that stood away from the 
wall and was about 100 mm long. The bottom of the 
core was only 50-150 mm above the elevation at which 
heating began. Its actual position varied with the size 

Tw-~. 

To-. 

iSmoke core 

FIG. 11. Sketch of the core of smoke that remained in 
restricted-entry duct with a very large value of IJl. The 
inferred motion of the fluid around and within the core is 

superimposed. 

of the restriction; the larger the restriction the lower 
the core was in the duct. Perhaps the most interesting 
thing about this core of smoke was that it was stable 
and remained visible up to 10min after the smoke 
entered the duct. A symmetrical recirculation of air 
within the core is envisaged with the downward flow in 
the centre of it. Such a recirculatory motion could 
conceivably resolve the situation that developed when 
the central region could no longer supply enough fluid 
to the growing boundary layer. Above the recirculat- 
ing flow it is likely that the temperature in the central 
region would have risen sufficiently to cause a reverse 
flow away from the wall towards the centre, thus 
leading to the growth of a developed laminar flow. The 
lower temperature fluctuations shown in Fig. 10 could 
have been caused by minor irregularities in the flow 
reacting with the recirculating flo~: This point of view 
is strengthened by the fact that in tests when the wire 
screen at the bottom of the unheated portion of the 
duct was replaced by a smaller diameter tube, which 
would have produced a somewhat less favourable flow 
pattern, the lower surface of the smoke core showed 
signs of unsteadiness. 
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Tests on the largest diameter duct with lift ~ 150 
yielded Nusselt numbers just below those for lfll ~ 48. 
An irregular open-thermosyphon flow at the top was 
again detected. 

As the open-thermosyphon duct represents an ex- 
treme case of the restricted-entry duct (that is, one with 
an 1Jl ratio of infinity) the experimental ducts, 
although they were not specifically designed for the 
purpose, were operated as open thermosyphons by 
sealing their lower ends. The results of these tests, 
which agree reasonably well with the results of other 
workers [12-14], are also shown in Fig. 9. It should be 
noted that the Nusselt numbers for the two open 
thermosyphons and the restricted-entry ducts with l~/l 
~ 48 and 150 lie in a fairly narrow band. Care must be 
taken, however, in interpreting the closeness of these 
results. First, the open thermosyphon for a given 
Rayleigh number is based on a smaller temperature 
excess of the wall because the outflowing air heats the 
space above the duct, which is the source of its coolant. 
Secondly, the small upward flow in a restricted-entry 
duct with a large value of I.,/l could upset the effective- 
ness of the open-thermosyphon flow that would 
otherwise establish itself in the upper part of the duct. 
And finally, two temperature excesses, it should be 
noted, are associated with those restricted-entry ducts 
that produce open-thermosyphon flows (in this ex- 
perimental work the temperature of the air below the 
bottom of the duct was taken as the lower reference 
temperature). Likewise, Nusselt numbers for the open 
thermosyphons and the restricted-entry ducts cannot 
be directly compared because the temperature excess 
of the wall is also a parameter of the Nusselt number. 
These points are illustrated in Tables 3 and 4 where 
data are compared for an open thermosyphon and a 
restricted-entry duct that for similar Rayleigh numbers 
produced similar Nusselt numbers. Even with a value 
of llft as large as 48 Table 4 shows that the restricted- 
entry duct still transferred the greater proportion of its 
heat in the lower part of the duct and consequently the 
upward flow of air was the major contributor to heat 
transfer. 

CONCLUSIONS 

This investigation has demonstrated that if an entry 
restriction is applied to a heated vertical duct of 
circular cross-section, the pattern of natural- 
convective flowthrough the duet can be significantly 
changed. The entry restriction that was used in the 
investigation was simply an unheated extension of the 
duct and the degree of restriction it imposed was 
expressed as the ratio of the unheated to the heated 
length, li/1. The theory showed the largest value of lJ l  
that permitted upward laminar flow throughout the 
duct decreased from 18 in the fully-developed flow 
regime (small values of Ra) to only 2 in the boundary- 
layer flow regime (large values of Ra).  

The heat transfer per unit cross-sectional area of a 
duct can be maximised. For a given heated length, a 
given temperature excess of the wall and specified fluid 
properties, the heat transfer per unit cross-sectional 
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m 

Ra* 
N u *  
T..( '( ') 
1o('c) 
7~,(C) 
Temperature 
difference (°C) 
Heat dissipated (w) 
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Table 3. Comparison between the heat dissipated by a restricted-entry duct 
with li/l ~ 48 and by an open-thermosyphon duct with a similar Rayleigh 
number; the ducts were 57.2 mm in diameter and the heated length of each 

was 1220 m m  

Restricted-entry Open-thermosyphon 
duct / i l  - 48 duct 

104o 1060 
0.71 0.66 

44.4 102.2 
20.0 23.9 
36.7 52.2 

( 71, li, ) -- 24.4 17~, - "I~, ) = 50.0 
3.72 7.77 

*The air properties, except the coefficient of thermal buoyancy, were 
evaluated at the temperature of the surface. The coefficient of thermal 
buoyancy was taken to be the reciprocal of the appropriate ambient 
absolute temperature. 

Table 4. Comparison between a restricted entry duct and an ()pen- 
thermosyphon duct with a similar Rayleigh number that shows the 
percentage of the total rate of heat transfer that was attributable to each 
heating element ; the ducts were 57.2 mm in diameter and the heated length 

of each was 1220mm 

Percentage of the total rate 
of heat transfer 

Height above the Restricted-entry Open-thermosyphon 
bottom of the heated duct with l j l  ~ 48 duct 
length (mm) R a  = 1040 R a  = 1060 

911 1220 7 95 
231 910 27 5 

0 230 66 0 

Total 100 100 

area is maximised when N u / R a  1/2 acquires its maxi- 

mum value. The op t imum Rayleigh number ,  and 
therefore the op t imum diameter  of the duct, is strongly 
influenced by the value of l j l .  

For  values o f l j l  larger than  those shown in Fig. 3 for 
upward  laminar  flow th roughou t  the duct, the boun-  
dary layer growing near  the wall demanded  more  fluid 
than  the cooler central  region could supply and as a 
result the velocity on the centre line fell to zero. 
Velocity and  tempera ture  fields further  up the duct 
could not  be ob ta ined  from the step-by-step relaxat ion 
since this me thod  of solution can handle  only uni- 
directional  flows. 

The main  thrus t  of the experimental  work, therefore, 
was to ob ta in  informat ion  on the behaviour  of ducts 
with larger values of l i / l  than  were predicted to give 
upward  l aminar  flow throughout .  Flow visualisation 
studies with smoke in such ducts revealed a core of air 
tha t  overall  did not  move. Between this s ta t ionary core 
and  the wall there was an upward  flow. With in  the core 
it is likely tha t  there was a symmetrical  recirculation 
with the down-flow in the centre region. This pa t te rn  of 
mot ion  was p robab ly  the bridge between a growing 
bounda ry  layer tha t  could not  be fed and  the more  

developed flow, associated with higher air tempera-  
tures, further  up the duct. 

If the value of l i f  t were sufficiently large, a weak, 
i rregular  open - the rmosyphon  flow established itself at 
the top  of the duct  in co-existence with the upward  flow 
from the bot tom.  For  Rayleigh numbers  between 
2 × 10 z and 2 x 104 the restr icted-entry ducts with lift  

48 and  150 and  the open the rmosyphons  produced 
similar Nusselt  numbers .  However,  owing to the 
t empera ture  excess of the wall for a given Rayleigh 
n u m b e r  not  being the same for the two types of duct, 
quite different rates of heat  transfer were produced. 
This serves to emphasise  tha t  only in the limit does the 
restricted-entry duct  approach  the open thermo-  
syphon in behaviour.  
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CONVECTION NATURELLE DANS UNE COUDUITE VERTICALE 
AVEC UNE ENTREE FROIDE 

R e s u m e - O n  6tudie la convection naturelle laminaire dans une conduite verticale chauff~e avec une 
restriction de l'+coulement 5. l'extr6mit6 basse. La conduite a une section droite circulaire et le chauffage 
r6alise une temp6rature de surface uniforme. La restriction fi l'entr6e est form6e par une extension non 
chauff6e du tube vers le bas. Les 6quations qui gouvernent l'6coulement ~ travers la conduite sont 
r6solues par une technique num6rique pas fi pas. On pr6sente graphiquement la relation entre le nombre 
de Nusselt global et le hombre de Rayleigh en fonction du d6bit adimensionnel du fluide et aussi en 
fonction du rapport de la longueur non chauff6e ft. la longueur chauff6e. Ce rapport de longueur fournit 
une mesure de la s6v6rit+ de la restriction d'entr6e. Un r6sultat important de l'6tude est que si la 
restriction d'entr6e d6passe une certaine taille, l'6coulement laminaire ascendant dans la partie chauffee 
enti6re du tube n'est pas physiquement possible. Ceci se produit si le rapport de longueur d6passe 18 pour 
des valeurs du nombre de Rayleigh allant jusqu'fi 20 et d6passe seulement 2 pour des nombres de 
Rayleigh sup6rieurs fi 103. Un travail exp6rimental partiel est conduit pour corroborer les r6sultats 
th6oriques et aussi pour examiner la nature de l'ecoulement dans les tubes pour lequel la valeur du 

rapport de longueur pour l'6coulement laminaire est d6pass6e. 

FREIE KONVEKTIVE STROMUNG DURCH EINEN VERTIKALEN KANAL 
MIT BEHINDERTER Z U S T R O M U N G  

Zusammenfassung--Diese Arbeit beschreibt eine Untersuchung zur laminaren, konvektiven W~rmefiber- 
tragung an ein Fluid, das infolge Auftriebskr/iften durch einen beheizten vertikalen Kanal mit 
Behinderung dee Zustr6mung am unteren Ende str6mt. Dee Kanal hat einen kreisf6rmigen Querschnitt, 
und die Beheizung liefert eine gleichmS.Bige Oberfl~ichentemperatur. Die Behinderung dee Zustr6mung 
wird durch eine unbeheizte Verl~ingerung des Kanals nach unten gebildet. Die Gleichungen, welche die 
laminare Str6mung bei freier Konvektion durch den Kanal beschreiben, wurden ein schrittweises 
numerisches Verfahren gel6st. Die Beziehung zwischen der mittleren Nusselt-Zahl und dee Rayleigh-Zahl 
wird in Abhiingigkeit vom dimensionslosen Durchsatz und vom Verh/iltnis von unbeheizter zu beheizter 
L~inge des Kanals grafisch ~argestellt. Das L~ingenverh/iltnis liefert ein Mal3 fiir die Schwere dee 
Zustr6mungsbehinderung. l~it~wichtiges Ergebnis dee Untersuchung war, dab eine laminare Aufwii- 
rtsstr6mung im gesamten beheizten Teil des Kanals physikalisch nicht m6glich ist, wenn die Behinderung 
ein gewisses Mal3 iiberschreitet. Dies passiert, wenn das Verh/iltnis yon unbeheizter zu beheizter Liinge 
bei Rayleigh-Zahlen bis 20 den Wert 18 und bei Rayleigh-Zahlen gr6ger 103 nur den Wert 2 iibersteigt. 
Einige experimentelle Versuche wurden unternommen, um die theoretische Beziehung zu bestS.tigen und 
auch um die Art dee Str6mung in Kan/ilen zu priifen, bei denen das Verh/iltnis unbeheizter zu beheizter 

LS.nge die Werte fiir laminare Str6mung im gesamten Bereich iibersteigt. 
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C B O B O ~ H O K O H B E K T l d B H O E  T E q E H I / I E  B B E P T I A K A d l b H O M  K A H A J 1 E  
C F I P E , ~ B K d l f O q E H H b l M  H E O B O I - P E B A E M b l M  Y q A C T K O M  

A U H O T a I I n ~  - -  B cTaTbe OFII, ICBIBaeTc~I TenflOO6MeH J']aMHrtapHo~t eCTeCTBeHHO~ KoHaeKur~eh B r~arpe- 
BaeMOM BepTt,IKaJIbHOM l<aHa~'~e c OCJIO~KHeHHBIM!,I yCJqOBI,DIMI4 TeqeHl, t~l Ha BXO~e. KaHa.q 14MeeT 
Kpyl'.aoe nonepeqHoe  ceqeH~e c O,/1HOpOjlHOIq ~reMnepaTypo~ FIOBep×HOCTI, I H BXOZIHblM ~2OnO.rlHH- 
TeJqbHblM HeO6OFpeBaeMblM yqaCTKOM. YpaBHeHHfl, Ol7~'lCblBaroLtH, le ~aMl, lHapHoe eCTe~_'TBeHHO- 
KOHBeKTt'IBHOe TeqeHHe B KaHaJqe, petz[a.q~Cb tlIelC~eHHO, t-paqbHqec~H r]pe~cTaBJqeHo COOTHOtUeHHe 
MeYKzIy cpe2/H~M qI4C.FIOM Hycce.~bTa ~ HI4C£1OM P3~e~, 3anHcaLttee OT 6e3pa3MepHo~ cKopocTH 
OTHOILIeHI, DI 2/.rll, lHbl Heo6orpeBaeMoro  yqacxKa K HarpeBaeMoMy. Floc.~e~Hee COOTI-IOtLIeHHe onpe,ae- 
~q~teT cTeFleHb Heo,/2HOpO,~HOCTI, t vpaHllqHblX ycJqOBl,lfi. BagHblM pe3yYlbTaTOM rlcC.rleZtoBaHl4~ ~IBt'IYlOCb 
aa3~,~He onpe,~e-qeuHo~ 2].FII'IHbl yqacxKa,  npH l¢OTOpO,q JqaMl4HapHbl~ xapaKTep TeqeHH~l HeBO3MOgeH. 
~TO H a 6 ~ o ~ a e T c f l  ]3 TOM c~yqae ,  ec.qH ZISr~Ha Heo6orpeBaeMoro  yqacTKa 6 o n ee  qeM B 18 pa3 FIpe- 
BblLUaeT 21~q~Hy HalpeBaeMo]-o yqacxKa I]p~ 3HaqeHHflX qHc,qa P3~qe~ lte 60.flee 20 g TO~qbKO B 2 pa3a 
npn  3HaqeHl'l~l× qnc ~ a  P3.~efl 60.rlbwe 103. BblFIO.FIHeH pfl,~ 3KCHepl4MeHTOB C 12e.,qblO IqOZITBep~;2eHHfl 
TeopeT~qecK~x 3aBI,ICI, IMOCTeH 14 KflpTHHbl TeqeuH~ B KaHaylax £u~fl ~qaMl, lrtapHOEO I¢2tteH~t£1 |]pH 

pa3£11,1qHblX 3HaqeHl,l~lX OTHOIUeHI, I~I ,I/J]l, IHbl Heo60rpeBaeMoro  y'~acTKa K .r/3~He HaFpeBaeMOrO. 


